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Abstract

Semiconductor manufacturing involves lengthy and complex processes, and hence is capital intensive. Companies

compete with each other by continuously employing new technologies, increasing yield, and reducing costs. Yield

improvement is increasingly important as advanced fabrication technologies are complicated and interrelated. In

particular, wafer bin maps (WBM) that present specific failure patterns provide crucial information to track the process

problems in semiconductor manufacturing, yet most fabrication facility (fabs) rely on experienced engineers’ judgments of

the map patterns through eye-ball analysis. Thus, existing studies are subjective, time consuming, and are also restricted by

the capability of human recognition. This study proposes a hybrid data mining approach that integrates spatial statistics

and adaptive resonance theory neural networks to quickly extract patterns from WBM and associate with manufacturing

defects. An empirical study of WBM clustering was conducted in a fab for validation. The results showed practical viability

of the proposed approach and now an expert system embedded with the developed algorithm has been implemented in a

fab in Taiwan. This study concludes with a discussion on further research.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The semiconductor manufacturing processes are
lengthy and complex. Thus, the capital investments
in the semiconductor industry are huge. The
manufacturing usually contains 100–200 process
steps, in which the wafers move from step to step in
groups of 25 or 24 identical wafers in a fabrication
facility (fab). After wafer fabrication, circuit probe
e front matter r 2006 Elsevier B.V. All rights reserved
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(CP) testing is performed on each die on the wafer.
Then, the wafers are died up, and the good dies are
packaged into chips and shipped to the customer
after final testing (FT).

The critical factors maintaining competitive
advantages for semiconductor wafer fabs include
lowering die costs via lean production and increas-
ing yield via quick response to yield excursions
(Leachman and Hodges, 1996; Peng and Chien,
2003). In particular, the defect problems should be
detected in time and the assignable causes should
then be resolved to reduce the loss of hundreds of
thousands of dollars of scraped wafers as soon as
.
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possible. Four yield definitions are used in semi-
conductor manufacturing: CP test yield (CP yield,
YCP), fabrication line yield (YL), assembly yield
(YAS) and final test yield (YFT). Among them, the
CP yield is the most critical (Cunningham et al.,
1995). CP yield improvement is divided into two
major categories: (1) based line yield improvement,
and (2) low yield trouble shooting. The based line
yield improvement is based on tuning the process
recipes to improve device performance and reduce
defects, while low yield trouble shooting involves
monitoring and diagnosing the failures caused by
abnormal events such as mis-operation, trouble tool
and contamination. Wafer bin map (WBM) is the
result of CP inspection of dies on the wafer at the
end of fabrication. WBM patterns can provide
information to monitor the process and product.

This study aims to develop a hybrid data mining
approach that integrates spatial statistics and adap-
tive resonance theory (ART) neural networks to
rapidly extract patterns from WBM and associate
them with manufacturing defects. An empirical study
of WBM clustering was conducted in a fab for
validation. Mining large amounts of data can help
the engineers make the right decision of classifying
patterns. During the manufacturing process, data are
collected for various purposes. In particular, Wafer
In Process (WIP) data refers to the data collected
while processing wafers; metrology data refers to the
data collected from in-line inspections; electrical test
(E-test) data refers to data collected to measure
device performance in chips, and the CP test data
records each chip’ functional test result after wafer
fabrication. Since modern fabs are equipped with the
computer integrated manufacturing (CIM) system,
data collection is no longer a major issue. Further-
more, an engineering data analysis (EDA) system
a b

Fig. 1. Example of WBM: (a) WBM with each failure bin denoted b

symbol ‘‘%’’.
that is an off-line analysis-oriented system with data
warehouse is generally developed to support data
analysis activities (Peng and Chien, 2003; Chien
et al., 2007). A remaining issue is to sieve out relevant
data from a massive pool to derived useful informa-
tion that can assist engineers in timely trouble
shooting and yield enhancement.

WBMs are multi-dimensional and have complex
structures, can provide essential information for
engineers to identify problems in the manufacturing
process. Fig. 1 shows a typical WBM where the
different symbols denote chips failing in different
functional tests. To assist visualization and analysis,
WBM is usually transformed into a binary map that
represents it using binary code or two different
colors. This study uses yellow squares or ‘‘1’’ to
denote defective chips, and red squares or ‘‘0’’ to
denote functional chips.

The failure patterns of WBM can be classified
into three major categories (Taam and Hamada,
1993; Stapper, 2000):
(1)
y a d
Random defect: No spatial clustering or pattern
exists, and the defective chips are randomly
distributed in the two-dimensional map. Ran-
dom defects are usually caused by the manu-
facturing environmental factors. Even in a in a
near-sterile environment, particles cannot be
removed completely. However, reducing the
level of random defects can improve the overall
productivity of wafer fabrication.
(2)
 Systematic defect: The positions of defective
chips in the wafer show the spatial correlation,
for example, ring, edge-fail, checkerboard.
Fig. 2 shows 10 systematic patterns that are
frequently seen in fab, as defined by domain
experts.
ifferent symbol; (b) WBM with specific bin denoted by the
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Systematic Random Mixed Type

Fig. 3. Mixed defect map.
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Fig. 2. Systematic defect patterns in semiconductor manufacturing.
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(3)
 Mixed defect: Consisting of a random defect and
a systematic defect in one map. Most wafer
maps are of this type, as shown in Fig. 3.
Engineer needs to separate random and sys-
tematic defects in the WBM, since the systematic
defect’s signature can reveal the process problem
(Friedman et al., 1997).
The rest of this study is organized as follows:
Section 2 formulates the WBM clustering problems
in yield improvement and reviews related studies.
Section 3 outlines the proposed approaches. Section
4 details a research framework for pattern extrac-
tion from WBM. Section 5 describes an empirical
study for validation. Finally, Section 6 concludes
this study with discussing the results and the
direction of future research.

2. Problem formulation

This study addresses the problem of finding
patterns from WBMs to monitor semiconductor
manufacturing process and provide pattern infor-
mation for trouble shooting. Engineers have to
integrate and analyze large amounts of data during
analysis. Data mining can efficiently find hidden yet
potentially valuable information in terms of specific
patterns from massive data (Keki et al., 1993;
Kusiak, 2000; Peng et al., 2004). Several studies
have applied data mining techniques to solve
manufacturing and yield problems. For example,
the decision tree method can be used to identify the
faulty equipment and the corresponding dates of
failure (Bergeret and Gall, 2003; Braha and
Shmilovici, 2002, 2003; Chien et al., 2007). Self-
Organization Map (SOM) clustering has been
applied to cluster E-test, CP fail bins and metro-
logy data to detect the failure patterns (Chien
et al., 2003). In addition, Braha and Shmilovici
(2003) apply three classification-based data mining
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Table 1

Two-way contingency table of adjacent chips

Position i Position j

Good Bad

Good NGG NGB

Bad NBG NBB

Fig. 4. King–Move neighborhood.
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methods (decision tree induction, neural networks,
and composite classifiers) to refine dry-cleaning
technology for process improvement.

However, few studies have been conducted to
develop WBM clustering methods, though WBM
spatial patterns contain useful information about
potential manufacturing problems. For example,
mask misalignment in the lithographic process
generates a checkerboard pattern; the abnormal
temperature control in the rapid thermal annealing
process (RTP) can generate a ring of failing chips
around the edge of the wafer. By reviewing WBM
patterns, experienced engineers can quickly clarify
the root causes and identify the assignable causes.
Most existing studies focus on diagnosing systema-
tic defects or patterns in wafer maps (Mallory et al.,
1983; Hansen and Nair, 1995; Kaempf, 1995;
Friedman et al., 1997), but give no information
about pattern types.

The lack of adequate tools has also led engineers
to only use data relating to simple measures such as
overall yield to track process problems. Experienced
engineers review the WBM to possibly identify
spatial patterns with only visual analysis based on
printed maps. Furthermore, most effort in existing
analysis is devoted to data integration from testers
and manufacturing process. The existing practice
based on human judgments causes low analysis
efficiency and the results varied among the experts
since they had different mental models.

3. Fundamental

3.1. Spatial randomness test

The spatial correlation of two groups of data can
be tested by the odd ratio hypothesis test (Agresti,
1990; Taam and Hamada, 1993). The revised
estimator is as Eq. (1).

ŷ ¼
ðNGG þ 0:5ÞðNBB þ 0:5Þ

ðNGB þ 0:5ÞðNBG þ 0:5Þ
. (1)

In Eq. (1), NGG, NBB, NBG and NGB are defined
as the counts of relations of adjacent chips in the
two-way contingency table, as described in Table 1.
The relation is defined by the King–Move neigh-
borhood in two-dimensional space as described
in Fig. 4.

Let Yi represents the CP test result of chip in the
position i of map. If Yi ¼ 1, then the chip in position
i fails in the CP test; conversely, Yi ¼ 0 means the
chip passes the CP test. Then, NGG, NBB, NBG and
NGB can be calculated as follows:

NGG ¼
XX

ioj

dijð1� Y iÞð1� Y jÞ; (2)

NGB ¼
XX

ioj

dijð1� Y iÞY j, (3)

NBG ¼
XX

ioj

dijY ið1� Y jÞ, (4)

NBB ¼
XX

ioj

dijY iY j, (5)

where

dij

1 if Y i and Y j are in King�Move neightbor;

0 otherwise;

(

The steps of spatial randomness testing are
described as follows:

Step 1: Establish hypotheses:
Two alternative hypotheses are built for the

spatial randomness test.
�
 H0: The distribution of failure chips or good
chips in the wafer is spatially random.
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�
 H1: The distribution is not spatially random and
the map exhibits special clusters of fail chips or
repeat patterns.

Step 2: Select the test statistics:
When the sample size is large, the distribution of

estimator, log ŷ is asymptotic to normal distribution
with the parameters (m, s),where m ¼ 0, and s ¼

1
NGGþ0:5

þ 1
NBBþ0:5

þ 1
NGBþ0:5

þ 1
NBGþ0:5

� �1=2

Step 3: Test WBM with following rules:
�
 Rule 1: If log ŷ � 0, then the map is spatially
random.

�
 Rule 2: If log ŷb0, then the map shows special

clusters.

�
 Rule 3: If log ŷ50, then the map shows a

repeating pattern.

3.2. ART for map clustering

The ART (Carpenter and Grossberg, 1988;
Freeman and Skapura, 1991) has been applied in
many areas including pattern recognition and
spatial analysis. ART derives fundamentally from
the adaptive resonant feedback between two layers
of neurons. To manage the variety input, ART has
the following characteristics: (1) balance on stability
and plasticity, (2) match and reset, and (3) balance
on search and direct access. ART solves the
stability–plasticity dilemma, which is caused by
learning new data leading to unstable conditions
and loss of data. Several algorithms are derived
from the original ART, including ART1 (Carpenter
and Grossberg, 1988), ART2 (Carpenter and
Grossberg, 1987), ART3 (Carpenter and Grossberg,
1990), ARTMAP (Carpenter et al., 1991), and
Fuzzy ART (Carpenter et al., 1991).

This study employs the ART1 algorithm for WBM
clustering, since the input data form a binary map.

3.3. Decision tree

Decision tree can be used to extract models to
describe important data classes or to predict future
data trends. A decision tree is a flow-chart-like tree
structure where the root at the top and the leaves at
the bottom. Through serial tests on the attributes of
the root node containing the entire dataset, the
branches representing the outcomes of the tests and
the leaves indicating the classes are thus con-
structed. Each path from the root node to a leaf
can be interpreted as a rule.

Decision tree construction can be separated to
three basic elements: first, growing the tree; second,
pruning the tree; third, extracting rules from the
tree. Several algorithms have been developed to
construct decision tree model. Chi-squared auto-
matic interaction detection (CHAID) is a non-
binary decision tree that determines the best multi-
way partitions of the data on the basis of
significance tests (Kass, 1980). CHAID is designed
specifically to deal with categorical variables.
classification and regression tree (CART) is a binary
decision tree with the Gini-index of diversity as the
splitting criterion, and pruning by minimizing the
true misclassification error estimate (Breiman et al.,
1984). CART can deal with categorical and
continuous variable. C4.5 is a variant and extension
of a well-known decision tree algorithm, ID3
(Quinlan, 1993). The splitting criterion of C4.5
algorithm is gain ratio that expresses the proportion
on information generated by a split. The error-
based pruning is used to C4.5 for pruning. Lim et al.
(2000) compared the prediction accuracy, complex-
ity and training time of 33 classification algorithms,
and indicated that decision tree provides good
accuracy and data interpretation.

4. The research framework

This study proposes a framework integrated with
spatial statistics and ART1 network with domain
knowledge to improve the efficiency of WBM
clustering. Then, the extracted spatial patterns will
be correlated with process data by applying decision
tree to identify the root causes. Fig. 5 illustrates the
research framework.

4.1. Data pre-processing

Before clustering, the WBM data are pre-pro-
cessed in three stages: data integration, data
cleaning and data transformation.
(1)
 Data integration: Engineers usually use a specific
bin or combined multi-bins to query WBM data.
Two options are available for integrating the
WBM data: Analysis by wafer where each map
represents a wafer, the other is analysis by lot
where the map is generated from all wafers within
the lot. Each map represents the integrated
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Fig. 5. Research framework for WBM clustering.
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spatial result of a lot. In practice, engineers will
try to correlate the spatial patterns with process
data, like tools, date and operator, yet without
systematic methodologies to support effective
analyses. The data resolution of process data is
usually with lot-based in 200mm wafer fabs.
Thus, the WBM data has to integrate from
wafers into lot-based map for data preparation to
support analysis with the lot-based process data.
In this study, we applied a threshold value to
translate the accumulated percentage by wafers
into binary data to represent the lot-based WBM.
(2)
 Data cleaning: Missing data often arise in the
WBM because the probe might not work
correctly in some chips during the CP test. This
study deletes missing data. Therefore, if a
position of has no test data in one map, then
the data in this position in other maps are not
included in the calculation.
(3)
 Data transformation: The data are transformed
into several formats for different purposes. The
proposed framework defines two formats to be
transformed:
(a) Binary map: Based on the selected bin, BINi,

the ‘‘binary’’ map is created using 1 to denote
the defective chips, and 0 to denote passing
chips. The binary map is used for to visualize
the chip, and to test for spatial randomness.
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(b) Binary vector: Each WBM is converted from
the two-dimensional map into an one-
dimensional vector using the index map.
The index map is defined by coding the
position of each chip in the map with a
sequence sorted from left to right and top to
bottom. Then, each map can be converted
into a vector in terms of this sequence. Fig. 6
illustrates this transformation process. The
binary vector is applied to generate the
ART1 network.
4.2. Spatial randomness testing

Each map is tested for spatial randomness testing
and classified into three types: ‘‘Checkerboard
Defect’’, ‘‘Clustered Defect’’ and ‘‘Random De-
fect’’. The ‘‘Checkerboard Defect’’ (or ‘‘Repeating
Defect’’) group can be further analyzed by being
directly correlated with the lithographic process
data. The ‘‘Clustered Defect’’ maps are clustered
using ART1. The ‘‘Random Defect’’ maps are
further classified by the WBM fail rate that
represents the degree of trouble in manufacturing.
‘‘Random Defect’’ maps are classified into three
sub-groups: ‘‘Minor Fail’’, ‘‘Moderate Fail’’ and
‘‘Serious Fail’’. The maps in the ‘‘Moderate
Fail’’ group are also clustered by ART1 to ensure
that no information has been lost in pattern
extraction, since the spatial randomness testing
only tests the spatial independence between ‘‘Good’’
and ‘‘Bad’’ chips, not the pattern itself. Addition-
ally, the definition of ‘neighborhood’ affects the test
results.
0 1 0
1 0 1 1 0

1 1 0 0 0 1 0
0 1 0 1 1 1 1 0 0
111 1 1 0 0 11
0 11 1 0 0 0 0 0

1 0 0 0 0 0 1 1
1 0 1 1 0 0
0 1 0 1 0

1 0 1

Binary Map

Codi n g  Progr

[0,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,1,1,

0 1 0
1 0 1 1 0

1 1 0 0 0 1 0
0 1 0 1 1 1 1 0 0
1 1 1 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0

1 0 0 0 0 0 1 1
1 0 1 1 0 0
0 1 0 1 0

1 0 1

Coding Prog

Fig. 6. Transfer map data (2D)
4.3. Enhance the signal and remove the noise

To obtain good clustering results, we developed a
data preparation procedure to enhance the signal
and remove the noise (ESRN) as follows:

First, the King–Move neighborhood is applied to
define the weighs of the adjacent chips. The
positions on the four nearest neighbors (left, right,
top and down) are weighted 1. The corner positions
are weighted 0.5.

Second, two rules are applied to each chip in the
map. For spatial randomness testing, Yi is defined
as the CP test result of the chip in the position i of
the map. If Yi ¼ 1, then the chip in position i fails
the CP test; while Yi ¼ 0 indicates that the chip
passes the CP test.

For a given position i, let

Niþ ¼
Xn

j¼1

dijð1� Y iÞY j, (6)

Ni� ¼
Xn

j¼1

dijY ið1� Y jÞ, (7)

where

dij ¼
1 if Y i and Y j are in King�Move neightbor;

0 otherwise:

�

Rule 1: If Y i ¼ 0 and Niþ4r1; then Y i ¼ 1 (en-
hance signal).
Rule 2: If Y i ¼ 1 and Ni�4r2; then Y i ¼ 0 (re-
move noise),
where r1 and r2 represent the threshold value of
enhancing signal and removing noise.
1 2 3
4 5 6 7 8

9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61

62 63 64

IndexMap

(By Product)

a m

1,0,0,1,1,1,1,1,0,0,1,1,0,1,1,1,0…]

1 2 3
4 5 6 7 8

9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61

62 63 64

ram

format into vector (1D).
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Fig. 7 illustrates two rules applied to chips in a
King–Move neighborhood. An experiment with

different r1 and r2 setting was performed to identify
which types of signals are enhanced and which are
degraded. We select three frequent-seen patterns
and one composite pattern for ESRN test. The
setting of r1 changes from 4 to 5, while r2 changes
ba

Fig. 7. ESRN graph of a chip: (a) Enhance signals; (b) Remove

the noise.

Pattern

Checkerboard

Ring

Right-Down
Edge

Composite
Pattern

Original Map
ESRN

(ρ1=4, ρ2=6)

Fig. 8. Comparison of maps before and after
from 5 to 6. Fig. 8 displays the experiment result of
ESRN. As shown in the results, some random
defective chips have been removed from original
maps of the ‘‘Right-Down Edge’’ pattern and
‘‘Composite’’ pattern and the rule 2 has enhanced
the pattern in the maps of these patterns. However,
the pattern with ‘‘Checkerboard’’ defect that is
caused by mask defects is totally destroyed and the
‘‘Ring’’ defect is affected by the setting of threshold
value. These results are due to the King–Cross
neighbor can handle the blocked pattern more
effectively. To solve this issue, we apply the spatial
randomness testing before ESRN to separate the
‘‘Checkerboard’’ defect from others in our proposed
framework. For the ‘‘Ring’’ defect, we set the
ESRN
(ρ1=4, ρ2=5)

ESRN
(ρ1=5, ρ2=6)

ESRN
(ρ1=5, ρ2=5)

ESRN with different threshold settings.
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threshold value of r1 and r2 to 4 and 6, respectively,
in our algorithm, which are better setting in the
experiment.

4.4. Map clustering

The objective of map clustering is to maximize the
spatial similarity within clusters and minimize the
number of clusters. This study applies the ART1
method to cluster the similar maps. The other
objective is to extract the common pattern from
each cluster. The common pattern is defined as the
intersection of maps within a cluster. With this
information, engineers do not need to examine the
patterns map by map, and can correlate the patterns
with the specific process problem mentioned in
Section 2. Two groups of maps are clustered by
ART1 after spatial randomness testing: the ‘‘Clus-
tered Defect’’ group and the ‘‘Moderate Fail’’ sub-
group of ‘‘Random Fail’’.

4.5. Merger pattern

The patterns that are generated from the ‘‘Clus-
tered Defect’’ group and the ‘‘Moderate Fail’’ group
are collected and clustered using ART1 to merge the
patterns. This step serves two purposes: (1) to
minimize the number of clusters as few as possible
since many clusters make patterns hard to interpret,
and (2) to integrate the patterns, since some maps in
the ‘‘Random Fail’’ group may still have patterns of
spatial cluster, which may be similar to the
‘‘Clustered Defect’’ patterns.

4.6. Interpret results

Engineers can select patterns to analyze further.
For example, they can conduct correlation analysis
to correlate the special patterns with the process
information. If the result is unacceptable, engineers
can return to the steps of Map Clustering or Merge
Pattern to adjust the parameters in the framework
to generate a new result.

4.7. Root cause identification

The step of root cause identification is employed
to identify the suspected process tools or periods
that cause the fault or abnormal pattern of selected
component. Classification techniques, i.e., decision
tree, are applied to clarify the relations of the
selected component to clarify the relations and
related process information systematically. The first
step is to integrate these data together and transfer
into a new variable with two categories, ‘‘With
Pattern’’ and ‘‘Without Pattern’’. This new variable
is the target variable of decision tree. Then, the
related process data including tools, date, and
operator are used as the input for decision tree
analysis to identify the suspected process steps for
further investigations. Finally, engineer can make
judgments on the suspected causes of extracted
clustered WBMs.

4.8. A numerical example

To demonstrate the effectiveness of the proposed
framework, a case of 25 maps was generated from
seven groups with special patterns plus random
defects (see Fig. 9 for some of the patterns). Each
map contained 63 chips and the fail rate varied from
0% to 100%.
(1)
 Spatial Randomness Testing: Table 2 sum-
marizes the spatial randomness results. Three
maps were placed in the ‘‘Clustered Defect’’
group with the criterion of p-value o0.00005
(maps 8, 13 and 16). Three maps with negative
log odd ratio and p-value o 0.05 were classified
as the ‘‘Checkerboard Defect’’ (maps 2, 7 and
18). Others were classified as ‘‘Random Defect’’,
and were further classified into three sub-groups
by the fail rate. The ‘‘Minor Fail’’ sub-group
comprised the maps with fail rate %5% (maps 4,
12 and 22), while the ‘‘Serious Fail’’ sub-group
had fail rate ^95% (map 6, 17 and 21). The
remaining maps (total 13 maps) were placed into
the ‘‘Moderate Fail’’ group. Further examina-
tion of the maps in the ‘‘Moderate Fail’’ group
indicated 11 maps with two special patterns,
‘‘Ring’’ (maps 3, 5,10,11 and 14) and ‘‘Compo-
site’’(maps 9,15, 20, 24 and 25). The ART1
clustering was applied to the ‘‘Moderate Fail’’
group later.
(2)
 Map Clustering: With the vigilance threshold,
one cluster was extracted from the ‘‘Clustered
Defect’’ group, and two were extracted from the
‘‘Moderate Fail’’ group. After merging the
patterns, the three groups had not changed.
Fig. 10 summarizes the final results. Compar-
ing Figs. 9 and 10, shows that the maps with
the special patterns defined in Fig. 10 are in the
same group after clustering. For example, the
maps with ‘‘Right-Down Edge’’ pattern are
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Group 2

(Right-Down Edge)

Group 3

(Composite)

Group 4 
(Checkerboard)

Group 5

(Minor Random)

Group 6

(Serious Random)

8

9 15 18 20 24 25

13 16

2 7

1 4 12

6 17 21

19 22 23

Fig. 9. Groups and patterns used to generate maps.
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clustered in the C1 group before and after
clustering. The only mis-classified map is the
18th map, which belongs to the ‘‘Composite’’
group but is classified into the ‘‘Checkerboard’’
cluster due to this map’s overall mis-classifica-
tion rate is 4% (1/25). Therefore, the clustering
results using the proposed framework are fairly
consistent with the true groups.
5. Empirical study

For validation, an empirical study was conducted
to verify the effectiveness of the proposed frame-
work over conventional methods in a wafer fab. The
study used a product with high yield variation in CP
testing over a period of 2 months. A total of 138 lots
completed the CP test during this period.
5.1. Data pre-processing

The raw data were selected from database and
transformed into 138 maps, each of which repre-
sented an integrated result of lot accumulated by
wafers within the lot. The original map consisted of
301 chips, but 33 chips had at least one map with
missing data. Excluding these chips, the location of
268 chips was used for clustering and spatial
randomness testing.
5.2. Spatial randomness testing

After testing, 59 maps were found to have spatial
correlation under significant level a ¼ 0.00005, and
were placed in the ‘‘Clustered Defect’’ group, while
the other 79 maps were placed in the ‘‘Random
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Table 2

Summary of spatial randomness testing of 25 maps

Id NBB NGB NBG NGG LogOR Std. p-value Fail_rate

(%)

1 0 20 18 175 �1.464 1.452 0.15673 11

2 7 56 57 93 �1.533 0.423 0.00015 19

3 18 48 44 103 �0.120 0.327 0.35707 27

4 213 0 0 0 6.057 2.450 0.00672 0

5 21 42 45 105 0.160 0.319 0.30826 28

6 0 0 0 213 6.057 2.450 0.00672 100

7 1 30 33 149 �1.517 0.858 0.03856 17

8 33 40 19 121 1.640 0.338 0.00000 31

9 52 56 56 49 �0.206 0.273 0.22577 50

10 13 35 34 131 0.371 0.373 0.15957 18

11 23 44 47 99 0.101 0.310 0.37238 28

12 1 15 15 182 0.131 0.895 0.44203 6

13 51 38 16 108 2.174 0.339 0.00000 37

14 19 41 41 112 0.242 0.329 0.23114 25

15 46 57 54 56 �0.176 0.274 0.25980 47

16 37 32 11 133 2.595 0.390 0.00000 30

17 189 12 12 0 �0.500 1.471 0.36695 95

18 38 61 59 55 �0.538 0.278 0.02631 45

19 1 11 10 191 0.867 0.924 0.17419 8

20 52 56 56 49 �0.206 0.273 0.22577 50

21 190 11 12 0 �0.412 1.474 0.39003 95

22 0 8 8 197 0.312 1.497 0.41732 3

23 2 20 18 173 0.134 0.713 0.42533 9

24 45 52 52 64 0.063 0.275 0.40972 45

25 40 59 58 56 �0.419 0.276 0.06443 45
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Defect’’ group. The ‘‘Random Defect’’ group was
divided into three sub-groups using the definition in
Section 6. The ‘‘Minor Defect’’ group contained
three maps with fail rate %5%, while the ‘‘Serious
Defect’’ contained eight maps with fail rate ^95%.
The other maps (68 in total) were placed in the
‘‘Moderate Defect’’ group.
Dissimilarity ¼ 1�
Maxð# of matched map between tester0s cluster and selected clusterÞ

# of map of selected cluster
. (8)
5.3. Map clustering

A total of 29 patterns were generated from the
‘‘Clustered Defect’’ group with vigilance threshold.
The same algorithm of ART1 clustering was also
applied to the ‘‘Moderate Defect’’ group. A total of
6 patterns (20 maps) were extracted from the
‘‘Moderate Defect’’ group. After merging the
patterns, 21 patterns were finally obtained from 79
maps. After excluding the patterns with single map,
there are 14 patterns with more than one map
within cluster. Fig. 11 presents the patterns with
more than one map within cluster.

5.4. Result and discussion

In summary, the WBM patterns from 138 maps
were extracted and organized in several groups by
using the proposed framework. Fig. 12 summarizes
the final results of this study. The results reveal
some specific patterns defined in Fig. 2, such as the
half-moon (P2), center (P8) and ring patterns (P11).
However, some maps had apparent clustering
patterns and were thus placed in the ‘‘Random
Defect’’ group with no special patterns, which was
due to the vigilance threshold setting in the ART1
network. The lower the vigilance threshold value,
the more patterns are extracted from the maps.
However, a low vigilance threshold value may also
cause dissimilar maps to group in the same cluster.

To estimate the effectiveness of the proposed
framework, nine senior integration engineers who
are domain experts for WBM analysis in this
empirical study were asked to cluster the 138
WBMs by themselves. The results were recorded
and the time to complete the clustering was
measured. Table 3 shows the summary of the
WBM clustering result by testers. The results
showed that most of the experts clustered the maps
into 12–28 patterns and the identified maps with
spatial patterns varied from 72 to 103. These results
revealed that the sensitivity of identifying patterns
by experienced engineers is higher than our algo-
rithm with the current setting of parameters. In
addition, the cluster dissimilarity that measures the
variability of tester’s clustering result to the result of
our model is defined as follows:
For specific patterns such as ring, half-moon, and
center defect, the engineers can easily cluster the
maps together. That is, the maps with blocked
defective pattern can be easily grouped by both
human and computer algorithm, while the un-
blocked patterns were recognized from person to
person with high variation.

As for the efficiency, the fastest engineer took
15.5min to complete the clustering (9 patterns of
72 maps) and the time taken varied from 15 to
28min, while the developed WBM clustering and
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Fig. 10. Patterns extracted from 25 maps.
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classification system embedded with the developed
hybrid algorithm only took 3min to generate the
result (21 patterns of 79 maps). The algorithm was
executed on a PC with a Pentium 4 processor, with a
2.4GHz clock speed and 512MB RAM. Further-
more, the computational requirements of our
proposed algorithm depend on the training para-
meters. However, the computational complexity of
the algorithm is essentially O(gm), where g is the
gross die number and m is the number of map.

5.5. Root cause analyses and identification

This study employed decision tree to identify root
cause of specific patterns (Chien et al., 2007). In
particular, Patterns P1 and P2 were selected as the
target variables, in which Pattern P1 contains 12
maps and Pattern P2 contains 5 maps. For
commonality analysis, we selected 10 lots from
‘‘Minor Defect’’ group and ‘‘Moderate Defect’’
group as the ‘‘Without Pattern’’ category of target
variable, where three lots from ‘‘Minor Defect’’
group and seven lots from ‘‘Moderate Defect’’
group with top seven highest CP yield. A total of
226 process steps with tool data of these lots are
selected as the explained variables. For Pattern P1,
the decision tree shows the ‘‘ADO_Photo’’ step has
the highest impact factor at the first branch of
derived decision tree by excluding the metrology
and clean process steps, as shown in Fig. 13. The
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Fig. 11. Partial pattern list after merging patterns.
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branch of this tree reveals the higher percentage
of lots that were processed by PHO_13 tool
had significant P1 pattern than those processed
by the other tools. This implies that the lots
with P1 pattern may be damaged by ‘‘ADO Photo’’
step and the suspected abnormal tool is ‘‘PHO_13’’.
The derived result was then presented to domain
experts for interpretation. The process engineers
found that the PHO_13 tool did have abnormal
events. Similarly, decision tree analysis was em-
ployed for Pattern P2 and the result showed
the MTE_13 tool in ML1_Etch process caused the
lots to have P2 failure pattern than those by the
other tools, as shown in Fig. 14. The domain experts
who are process engineers have confirmed the
results.



ARTICLE IN PRESS

Table 3

WBM clustering result by nine domain experts

Pattern dissimilarity Domain experts Statistics

]1 ]2 ]3 ]4 ]5 ]6 ]7 ]8 ]9 Mean SD

P1 0.58 0.58 0.08 0.17 0.42 0.67 0.58 0.25 0.67 0.44 0.22

P2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P3 0.00 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.17 0.35

P4 0.25 0.00 0.00 0.25 0.50 1.00 0.25 0.00 0.00 0.25 0.33

P5 0.00 0.00 0.00 0.25 0.00 1.00 0.25 0.00 0.00 0.17 0.33

P6 0.25 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.25 0.44 0.11

P7 0.00 0.00 0.00 0.00 0.33 1.00 1.00 0.00 0.00 0.26 0.43

P8 0.00 0.00 0.00 0.00 0.67 0.67 0.00 0.00 0.00 0.15 0.30

P9 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.33 0.50

P10 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.44 0.53

P11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P12 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.11 0.22

P13 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.44 0.53

P14 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.67 0.50

] of Patterns 11 11 17 24 16 18 21 9 13 15.6 5.00

] of maps with Patterns 91 79 75 79 103 91 99 72 86 86.1 10.74

Time (min) 20.0 22.8 22.5 20.5 23.0 23.8 26.5 15.5 28.5 22.6 22.85

Moderate
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79 68
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8

Defect

Serious

Defect

Defect

ART1

Clustering

Spatial

Randomness

Testing

Special

Patterns

79
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79

59
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3

8
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ART1

Clustering

20(6 patterns)

59
(23 patterns)

138 maps

Random

Defect

ART1

Clustering

Clustered

Defect

ART1 Special

Patterns

Fig. 12. Summary of clustering results of empirical data.
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5.6. Implement

The results of the above empirical study show
practical viability of the developed algorithm.
Indeed, a WBM clustering and classification
(WBMCC) expert system embedded with the devel-
oped algorithm has now been implemented in a fab
in Taiwan. Through the developed WBMCC,
engineers can directly query data, view maps,
perform WBM clustering and view the results.
Alternatively, engineers can also classify an un-
known WBM into specific pattern group via
WBMCC. Furthermore, engineers can dynamically
adjust the ART1 parameters to see the change in
result. The system also permits merging patterns by
ART1 clustering or by manually selecting several
patterns. The clustering results can also link to
decision tree analysis to correlate with process tools
automatically.

6. Conclusions

This study presented a hybrid algorithm that
integrates spatial statistics and ART1 neural
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networks to automatically extract patterns from
WBM. The framework can identify the maps with
spatial correlation using the spatial randomness
testing. Furthermore, the patterns can be specified
by the ART1 clustering method and extended to
link with trouble shooting procedure to provide
useful information to support yield improvement
decisions and activities in modern fabs. An empiri-
cal study showed that the proposed framework can
effectively improve the efficiency of WBM cluster-
ing, save WBM clustering time consistently and
provide the essential information for root causes
analysis.

However, the proposed framework that employed
ART1 as the clustering method can handle only
binary map. Other clustering methods such as
ART2 can be applied in the framework for
clustering the data with continuous type in the
future study. We found that the parameter settings
in ESRN and ART1 are sensitive to our framework.
For example, the number of clusters extracted in the
input maps by ART1 is sensitive to the vigilance
parameter. Thus, further studies are needed to fine-
tune the parameters in various contexts to increase
the effectiveness of WBM clustering. In addition,
some systematic patterns such as ring pattern are
difficult to detect them by neither spatial random-
ness testing nor ART. Further research is needed to
develop different methodologies to effectively iden-
tify specific WBM patterns.
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